
2,2-DIFLUORO-1-TOSYLOXYVINYLLITHIUM: A NOVEL, EFFECTIVE REAGENT FOR THE PREPARATION OF & KETO ACIDS FROM CARBONYL COMPOUNDS

Kiyoshi TANAKA, Takeshi NAKAI*, and Nobuo ISHIKAWA

Department of Chemical Technology, Tokyo Institute of Technology, Meguro, Tokyo 152, Japan

Carbanions stabilized by β -fluorine atom(s) are the most frequently encountered intermediates in organofluorine reactions and hence may serve as nucleophiles in carbon-carbon bond formations.² However, such β -fluorine stabilized carbanions have been of extremely limited use in organic synthesis. In our continuing investigation of new applications of organofluorine reagents in organic synthesis,^{3,4} we now wish to demonstrate the synthetic potentiality of the title reagent (2), readily generated from 2,2,2-trifluoroethyl tosylate (1) and 2 equiv of lithium diisopropylamide(LDA), which provides a facile synthetic route to α -keto acids (5) from various carbonyl compounds, as depicted below.

 $\frac{4}{2}$ The generation of 2 was best carried out by treatment of 1 with 2 equiv of LDA in THF at -78°C under nitrogen. At that temperature, carbonyl compounds were added and the mixtures were allowed to warm to 0°C providing quantitative yields of the corresponding carbinols (3). The crude products were then hydrolyzed with 95% sulfuric acid (0°C, 20 min) to the unsaturated acids (4) which were fully characterized. Hydrolysis of 4 with 10% aqueous sodium hydroxide (reflux, 2 hr) followed by acidification afforded the corresponding α -keto acids (5) in good yields. Alternatively, direct hydrolysis of 3 with 10% aqueous sodium hydroxide (reflux, 12 hr) also yielded 5; however, the one-step procedure, though more convenient, led to lower yields of products. Several examples of the preparation of α -keto acids are listed in Table I.

Notable advantages of the present method for the bishomologation of carbonyl compounds to α -keto acids compared with previous ones⁶ are (i) the easy availability of the starting material (1),⁷ (ii) good overall yields, (iii) the simplicity of the procedure requiring no purification of intermediates, and (iv) the applicability to both aldehydes and ketones. Although crotonaldehyde was converted to the acid 4 (R₂ = H, CH=CHCH₃), its conversion to the corresponding α -keto acid was not successful. This work serves to illustrate an example of the potential applications of organofluorine reagents in organic synthesis.

Carbonyl Compound	Acid 4 <u>ª</u> Yield,% <u>b</u>	α '-Keto Acid 5 <u>ª</u>	Yield,% <u>b</u>	Mp,°C (Lit.)
Acetone	76	(сн ₃)2снсосоон	95 (57 C)	0i1 ^{<u>d</u>}
Cyclohexanone	76	Сосоон	91	48-49 (45-49 °)
2-Butanone	60 <u>f</u>	сн _з сн _с снсосоон сн _з сн ₂ сн ₂	92	39-40 (40 ⁹)
<u>n</u> -Heptanal	71 <u>h</u>	сн ₃ сн ₃ (сн ₂) ₆ сосоон	98	43-44 (43-44 <u>ⁱ</u>)
Benzaldehyde	78 <u>h</u>	PhCH ₂ COCOOH ^j	89	154-156 (156 <u>k</u>)
Crotonaldehyde	73 <u>h</u>	<u>1</u>		dec. dec.

Table I. Synthesis of α -Keto Acids (5)

^a All products exhibited spectral (ir and nmr) data in accord with the assigned structures. ^b Isolated yields based on 1 and 4 for 4 and 5, respectively. ^c Overall yield based on 1 by the one-step procedure (see text). ^d Its 2,4-dinitrophenylhydrazone, mp, 197-198°C [lit. mp, 197°C: L. N. Owen, J. Chem. Soc., 236(1949)]. ^e D. D. E. Newman and L. N. Owen, J. Chem. Soc., 4713 (1952). ^f A 45:55 mixture of the <u>E</u> and <u>Z</u> isomers (by nmr analysis). ^g M. Igarashi and H. Midorikawa, J. Org. Chem., <u>28</u>, 3088 (1963). ^h Only <u>Z</u> isomer. For a full discussion of stereochemistry of related systems, see ref. 3. ⁱ F. Adickes and G. Andresen, Liebigs Ann. Chem., <u>555</u>, 41 (1944). ^j Obtained as a 2:7 mixture of the enol and keto tautomers (by nmr assay). ^k Mp for the enol tautomer: M. Bergmann and A. Miekeley, Liebigs Ann. Chem., <u>458</u>, 40 (1927). ¹ The corresponding *a*-keto acid was not obtained under general conditions (see text).

References and Notes

- Part IV on the series of new applications of organofluorine reagents in organic synthesis.
 Part III: K. Tanaka, S. Shiraishi, T. Nakai, and N. Ishikawa, <u>Tetrahedron Lett.</u>, 3103(1978).
 This work was supported in part by the Grant-in-Aid from the Ministry of Education, Japan.
- 2) M. Hudlicky, "Chemistry of Organic Fluorine Compounds", Ellis Horwood, New York, N. Y., 1976;
 W. A. Sheppard and C. M. Sharts, "Organic Fluorine Chemistry", Benjamin, New York, N. Y., 1969.
- 3) K. Tanaka, T. Nakai, and N. Ishikawa, Chem. Lett., 1379 (1977); ibid., 1263 (1976).
- 4) For recent papers on generations and reactions of halogenated 2,2-difluorovinyllithiums, see
 R. Sauvetre, D. Masure, C. Chuit, and J. F. Normant, <u>Synthesis</u>, 128 (1978).
- 5) The formation of the anionic reagent 2 was further verified by its characteristic behavior toward deuterium oxide and methyl iodide.
- G. Neef and U. Eder, <u>Tetrahedron Lett.</u>, 2825 (1977); P. Coutrot and C. Legris, <u>Synthesis</u>, 118 (1975); D. R. White and D. K. Wu, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 988 (1974), and references cited therein.
- 7) Available from Aldrich Co. and easily prepared from 2,2,2-trifluoroethanol: mp, 36-38°C.

(Received in Japan 28 August 1978)